DP-GAN: A Diversity-Promoting Generative Adversarial Network for Generating Informative and Diversified Text

Existing text generation methods tend to produce repeated and “boring” expressions. To tackle this problem, we propose a new text generation model, called Diversity-Promoting Generative Adversarial Network (DP-GAN). The proposed model assigns low reward for repeatedly generated text and high reward for “novel” and fluent text, encouraging the generator to produce diverse and informative text. Moreover, we propose a novel language model based discriminator, which can better distinguish novel text from repeated text without the saturation problem compared with existing classifier-based discriminators. The experimental results on review generation and dialogue generation tasks demonstrate that our model can generate substantially more diverse and informative text than existing baselines.